
A Method for Verification and Validation Certificate
Management in Eclipse

Mark Sherriff
North Carolina State University

Raleigh, NC, USA 27695
+1-919-513-5082

mark.sherriff@ncsu.edu

Laurie Williams
North Carolina State University

Raleigh, NC, USA 27695
+1-919-513-4151

williams@csc.ncsu.edu

ABSTRACT
During the course of software development, developers will
employ several different verification and validation (V&V)
practices with their software, but these efforts might not be
recorded or maintained in an effective manner. Our research
objective is to build a method which allows developers to track
and maintain a persistent record of the V&V practices used during
development and testing. The persistent record of the V&V
practices are recorded as certificates which are automatically
stored and maintained with the code and creates traceability from
the V&V practices to the code We have created a system that aids
developers in the management of certificates in the Eclipse
development environment. Also, we are researching a method to
utilize a parametric model in conjunction with this V&V
information to estimate the defect density of that program.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics - Performance measures,
Process metrics, Product metrics.

General Terms
Measurement, Design, Reliability

Keywords
Software Reliability Engineering, Reliability Estimation,
Validation and Verification Management

1. INTRODUCTION
During software development, a development team will use
several different methods to ensure that a system is of high-
assurance [14]. However, the verification and validation (V&V)
practices used to make a system reliable might not always be
documented effectively or this documentation may not be
maintained properly. This lack of proper documentation can
hinder other developers from knowing what V&V practices have
been performed on a given section of code. Further, if code is
being reused from an earlier project or code base, developers
might spend extra time re-verifying a section of code that has
already been verified thoroughly.

One way to improve the documentation and management of V&V
efforts is through the creation of certificates associated with the
code base. Certificates are a record of a V&V practice employed
by developers and can be used to support traceability between
code and the evidence of the V&V technique used. These
certificates can be automatically created, maintained, and verified
by software tools, which allows developers to utilize them without
excessive overhead.

Our research objective is to build a method which allows
developers to track and maintain a certificate-based persistent
record of the V&V practices used during development and testing.
Further, we will build a parametric model which utilizes these

certificates to provide an estimate the defect density of a program.
To accomplish this objective, we are developing and automating a
method called Defect Estimation with V&V Certificates on
Programming (DevCOP). This method includes: (1) a mechanism
for creating a persistent record of V&V practices as certificates
stored with the code base; (2) tool support to make this method
accessible for developers; and (3) a parametric model to provide
an estimate of defect density.

We are currently developing a plugin for the Eclipse1 integrated
development environment (IDE) to support certificate
management. The DevCOP Eclipse plugin allows developers to
create, manage, and store certificates with the code base itself.
We are also developing the DevCOP parametric model to provide
an estimate of defect density using a nine-step systematic
methodology for building software engineering parametric models
based on work developed at the Center for Software Engineering
at the University of Southern California [2, 11]. Research has
shown that parametric models [5] using software metrics, such as
the Software Testing and Reliability Early Warning (STREW) [8,
12] suite, can be an effective means to predict product quality.
Due to the increasing cost of correcting defects during the
software development lifecycle, developers can benefit from early
information regarding the defect density of their product.

In this paper, we describe our current work in developing and
validating the DevCOP parametric model and the DevCOP
Eclipse plugin to support the creation and maintenance of
DevCOP certificates.

2. BACKGROUND
In this section, we will discuss the relevant background work and
methodologies used during our research, including metric-based
defect density estimation; V&V techniques; and parametric
modeling in software engineering.

2.1 Parametric Modeling
Parametric models relate dependent variables to one or more
independent variables based on statistical relationships to provide
an estimate of the dependent variable with regards to previous
data [5]. The general purpose of creating a parametric model in
software engineering is to help provide an estimated answer to a
software development question early in the process so that
development efforts can be directed accordingly. The software
development question could relate to what the costs are in creating
a piece of software, how reliable a system will be, or any number
of other topics.

Parametric modeling has been recognized by industry and
government as an effective means to provide an estimate for
project cost and software reliability. The US Department of

1 For more information, go to http://www.eclipse.org/.

Defense, along with the International Society of Parametric
Analysts, acknowledges the benefit of using parametric analysis,
and encourages their use when creating proposals for the
government [5]. The Department of Defense claims that
parametric modeling has reduced government costs and also
improved proposal evaluation time [5].

Boehm developed the Constructive Cost Model (COCOMO) [3]
to estimate project cost, resources, and schedule. Further, the
Constructive Quality Model (COQUALMO) added defect
introduction and defect removal parameters to the COCOMO to
help predict potential defect density in a system. Nagappan [8]
created a parametric model with his Software Testing Reliability
Early Warning (STREW) metric suite to create an estimate of
failure density based on a set of software testing metrics. In our
research, we will also build a parametric model to estimate defect
density based upon V&V certificates recorded with the code.

2.2 Verification and Validation Techniques
During the creation of software, a development team can employ
various V&V practices to improve the quality of the software [1].
For example, different forms of software testing could be used to
validate and verify various parts of a system under development.
Sections of code can be written such that they can be
automatically proven correct via an external theorem prover [14].
A section of a program that can be logically or mathematically
proven correct could be considered more reliable than a section
that has “just” been tested for correctness.

Other V&V practices and techniques require more manual
intervention and facilitation. For instance, formal code
inspections [4] are often used by development teams to evaluate,
review, and confirm that a section of code has been written
properly and works correctly. Pair programmers [15] benefit from
having another person review the code as it is written. Some code
might also be based on technical documentation or algorithms that
have been previously published, such as white papers, algorithms,
or departmental technical reports. These manual practices, while
they might not be as reliable as more automatic practices due to
the higher likelihood of human error, still provide valuable input
on the reliability of a system.

The extent of V&V practices used in a development effort can
provide information about the estimated defect density of the
software prior to product release. The Programatica team at the
Oregon Graduate Institute at the Oregon Health and Science
University (OGI/OHSU) is working on a method for high-
assurance software development [14]. Programmers can create
different types of certificates on sections of code based on the
V&V technique used by the development on that section of the
code. Certificates are used to track and maintain the relationship
between code and the evidence of the V&V technique used.
Currently, the three types of V&V techniques that Programatica
can create certificates for include expert opinion, unit testing, and
formal proof. These certificates are used as evidence that V&V
techniques were used to make a high-assurance system [14]. We
propose an extension of OGI/OHSU’s certificates for defect
density estimation whereby the estimate is based upon the
effectiveness of the V&V practice for identifying defects (or lack
thereof) used in code modules.

2.3 Metrics to Predict Defect Density
Operational profiles have been shown to be effective tools to
guide testing and help ensure that a system is reliable [6]. An
operational profile is “the set of operations [available in a system]
and their probabilities of occurrence” as used by a customer in the

normal use of the system [7]. However, operational profiles are
perceived to add overhead to the software development process as
the development team must define and maintain the set of
operations and their probabilities of occurrence. Rivers and Vouk
recognized that operational profile testing is not always performed
when modern constraints on market and cost-driven constraints
are introduced [9]. They performed research on evaluating non-
operational testing and found that there is a positive correlation
between field quality and testing efficiency. Testing efficiency
describes the potential for a given test case to find faults at a given
point during testing. Our research uses non-operational methods
to avoid excessive overhead, while still providing valuable
information.

Nagappan [8] performed research on estimating failure density
without operational profiles by calibrating a parametric model
which uses in-process, static unit test metrics. This estimation
provides early feedback to developers so that they can increase the
testing effort, if necessary, to provide added confidence in the
software. The STREW metric suite consists of static measures of
the automated unit test suite and of some structural aspects of the
implementation code. Case studies [8] indicate that the STREW-J
metrics can provide a means for estimating software reliability
when testing reveals no failures. Another version of the STREW
metric suite was developed specifically for the Haskell
programming language, STREW-H [12, 13]. STREW-H was
similarly built and verified using case studies from open-source
and industry. These findings also showed that in-process metrics
can be used as an early indicator of software defect density for
Haskell programs. In our research, we use a similar approach to
predict defect density, taking software metrics and using a
parametric model to provide early defect feedback to developers

3. THE DevCOP ECLIPSE PLUGIN
We have created a DevCOP Eclipse plugin to handle the creation
and management of V&V certificates during the development
process2 [10, 13]. The main purpose of the plugin is to automate
the DevCOP method with little additional overhead for
developers. The plugin allows developers to create and store
certificates during the development process within the IDE so that
this information can be utilized throughout the code’s lifetime for
defect density estimation purposes, for maintenance purposes, for
analysis of the effectiveness of certain V&V practices, or for
future reference in reused code. Figure 1 shows a screenshot of
the Eclipse plugin for recording V&V certificates.

The current version of the plugin, Version 1.1.1, focuses on
recording certificates that normally do not produce artifacts that
are stored with the code. In other words, the plugin will aid
developers by recording information about manually-performed
V&V, not automatic or programmatic V&V, such as unit testing.
Programmers can select one or more functions for certification
through the Eclipse Package Explorer. They select the type of
certificate (i.e. Code Inspection, Pair Programming, Bug Fix) and
the relative importance of the certificate as the weight coefficient
associated with it. The certificate information is then stored in an
XML document that is saved in the project’s workspace. The
Eclipse plugin reads and writes to these XML documents as
certificates are created and edited.

The example certificate shows the information that is recorded
about the V&V technique and the function on which the technique
was used. Basic identifying information, such as the name of the

2 The plugin is available at http://agile.csc.ncsu.edu/mssherri/devcop/.

function and its location along with creation information, are all
included. At the time of creation, the certificate stores a hash of
the source code with the certificate. The plugin determines
whether a certificate is valid or not by comparing a stored hash of
the source code at the time of certification with that of the current
source code. If a change is made to a function’s code, the source
hash stored with the certificate no longer matches that of the
function’s source code, and the certificate is invalidated.

Our objective is to make the certificate creation process as easy
and transparent as possible, and will continue to improve it in later
iterations as we receive more developer feedback. The primary
method in which we accomplish this method of certificate
creation is through what we call Active Certificates. An Active
Certificate is a means by which Eclipse will automatically
identify changed code during a programming session to be
certified by the developer.

For example, if two programmers were about to start pair
programming on a piece of code, they would click the Active
Certificate button before they began. Eclipse would then actively
record non-trivial changes to the system (i.e. changes to the
abstract syntax tree of the code, not commenting or formatting
changes) and will present the affected functions to the developers
for certification at the end of the pair programming session. The
concept of Active Certificates can extend to several different
types of V&V activity, such as code inspections or bug fixes.
Active Certificates allow developers to write or modify code
normally, without increasing their work overhead.

Current improvements are being made to the plugin based on
feedback from development teams. Suggestions such as
integrating the DevCOP plugin with the refactoring mechanism in
Eclipse or with the source control system itself are being
considered. The automatic creation of other types of certificates
is another feature under development. Certificates will be

dynamically created from automated testing suites or other similar
methods of V&V. We are also adding reporting functionality to
the plugin to provide developers tools for evaluating their overall
V&V effort, including identifying sections that might not have
been covered by any V&V techniques as of yet.

4. THE DevCOP PARAMETRIC MODEL
A V&V certificate in DevCOP contains information on the V&V
technique that was used to establish the certificate and is
associated with a specific function in a piece of code. Different
V&V techniques will provide a different level of assurance as to
how reliable a section of code is. For example, a desk check of
code would be, in general, less effective than a formal proof of the
same code.

We are developing a parametric model which uses non-
operational metrics to estimate defect density based upon records
of which V&V practices were performed on sections of code
during development [10]. We also wish to integrate our
estimation directly into the development cycle so that developers
may take corrective measures earlier in the development lifecycle.

We envision the defect density parametric model to take the form
of Equation 1. For each certificate type, we would sum the
product of a size measure (perhaps lines of code or number of
functions/methods) and a coefficient produced via regression
analysis of historical data. The calibration step of the regression
analysis would yield the constant factor (a) and a coefficient
weighting (cj) for each certificate type, indicating the importance
of a given V&V technique to an organization’s development
process.

)*(
_

1
�

=

+=
typeecertificat

j
jj SizecaDensityDefect (1)

Figure 1. Screenshot of the DevCOP Eclipse plugin for recording V&V certificates.

To build and verify our parametric model of our DevCOP method,
we are utilizing the nine-step modeling methodology [11]:

1. Determine model needs;
2. Analyze existing literature;
3. Perform behavioral analysis;
4. Define relative significance;
5. Gather expert opinion;
6. Formulate a priori model;
7. Gather and analyze project data;
8. Calibrate a posteriori model; and
9. Gather more data; refine model.

The goal of the model is to provide an estimate of defect density
based on V&V certificates and the coverage of each certificate
type. We anticipate that a model would need to be developed for
each programming language we would study. Our current work
involves the Java (object-oriented) and Haskell (functional)
languages. We are currently investigating how this technique can
be applied to these two different languages.

5. LIMITATIONS
In the creation of certificates, we are not assigning more
importance to certain functions or sections of code over others, as
is done with operational profile means of estimation. Nor are we
using the severity of defects detected to affect the importance of
some certificates over another. While this level of granularity
could be beneficial, one of our initial goals is to make this method
easy to use during development, and at this time, we think that
adding this level of information could be a hindrance. Another
limitation is the granularity of certificates. Based on the
Programatica Team’s work [14] it was decided that methods
would be the proper level of granularity for certificates. The
determination of certificate weights used in the parametric model
is still being researched through empirical studies with industry
projects.

6. CONCLUSIONS AND FUTURE WORK
We have created and are currently validating a method for
managing V&V certificate information. We are also developing a
method for a development team to estimate software defect
density in-process using this V&V information. Due to the high
costs of fixing software defects once a product has reached the
field, information that can be provided to developers in-process
and can give an indication of software defect density is
invaluable. If corrective actions can be taken earlier in the
software development life cycle to isolate and repair software
defects, overall maintenance costs can decrease.

The DevCOP plugin allows developers to easily record their V&V
activities within the development environment without increasing
their overhead greatly due to the inclusion of Active Certificates.
The plugin also provides developers with a mechanism to manage
the effort that is put into V&V in a place where all developers can
see what measures have been taken to ensure a piece of code is
reliable and to treat it accordingly. DevCOP certificate
information can be used to provide a V&V history for particular
code segments. Further, after a set of certificates has been
created, an overall estimate of defect density can be created based
on the V&V weightings using a parametric model. We will
continue our work to improve the plugin based on developer
suggestions and to gather data to validate the DevCOP parametric
model.

7. ACKNOWLEDGEMNETS
We wish to give our sincerest thanks to the Programatica team for
their input on the various parts of this work. This work was
funded by the National Science Foundation.

8. REFERENCES
[1] Balci, O., "Verification, Validation, and Accreditation of

Simulation Models," Winter Simulation Conference, 1997,
pp. 125-141.

[2] Boehm, B. W., "Building Parametric Models," International
Advanced School of Empirical Software Engineering, Rome,
Italy, September 29, 2003.

[3] Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark,
B., Steece, B., Brown, A. W., Chulani, S., and Abts, C.,
Software Cost Estimation with COCOMO II. Upper Saddle
River, NJ: Prentice Hall, 2000.

[4] Fagan, M., "Design & Code Inspections to Reduce Errors in
Program Development," IBM Systems Journal, vol. 15, no. 3,
pp. 182-211, 1979.

[5] International Society of Parametric Analysts, "Parametric
Estimating Handbook." Available Online. Online
Handbook. http://www.ispa-
cost.org/PEIWeb/Third_edition/newbook.htm.

[6] Musa, J., "Theory of Software Reliability and its
Applications," IEEE Transactions on Software Engineering,
pp. 312-327, 1975.

[7] Musa, J., Software Reliability Engineering: McGraw-Hill,
1998.

[8] Nagappan, N., "A Software Testing and Reliability Early
Warning (STREW) Metric Suite," PhD Dissertation, North
Carolina State University, 2005.

[9] Rivers, A. T., Vouk, M.A., "Resource-Constrained Non-
Operational Testing of Software," International Symposium
on Software Reliability Engineering, Paderborn, Germany,
1998, pp. 154-163.

[10] Sherriff, M., "Using Verification and Validation Certificates
to Estimate Software Defect Density," Doctoral Symposium,
Foundations of Software Engineering, Lisbon, Portugal,
September 6, 2005, 2005.

[11] Sherriff, M., Boehm, B. W., Williams, L., and Nagappan, N.,
"An Empirical Process for Building and Validating Software
Engineering Parametric Models," North Carolina State
Univeristy CSC-TR-2005-45, October 19 2005.

[12] Sherriff, M., Nagappan, N., Williams, L., and Vouk, M. A.,
"Early Estimation of Defect Density Using an In-Process
Haskell Metrics Model," First International Workshop on
Advances in Model-Based Software Testing, St. Louis, MO,
May 15-21, 2005.

[13] Sherriff, M., Williams, L., "Tool Support For Estimating
Software Reliability in Haskell Programs," Student Paper,
IEEE International Symposium on Software Reliability
Engineering, St. Malo, France, 2004, pp. 61-62.

[14] The Programatica Team, "Programatica Tools for Certifiable,
Auditable Development of High-Assurance Systems in
Haskell," High Confidence Software and Systems, Baltimore,
MD, 2003.

[15] Williams, L. and Kessler, R., Pair Programming Illuminated.
Boston: Addison-Wesley, 2002.

